The stopping time of the stone is \(T=\dfrac{m}{\gamma}\ln(1 +\dfrac{\gamma v_0}{\mu mg})\) and the stopping distance of the stone is \(D=\dfrac{m}{\gamma}\left(\dfrac{\mu mg}{\gamma}+v_0\right)\left[1-\dfrac{\mu mg}{\mu mg+\gamma v_0}\right]-\mu g (\dfrac{m}{\gamma})^2\ln(1+\dfrac{\gamma v_0}{\mu mg})\)