Scroll back to the top

Virtual Math Learning Center Logo

Practice Problems for Module 9

Section 4.1

Directions. The following are review problems. We recommend you work the problems yourself, and then click "Answer" to check your answer. If you do not understand a problem, you can click "Video" to learn how to solve it. You can also follow the link for the full video page to find related videos. 
  1. Find the absolute maximum and absolute minimum values of \(f\) on the given interval.​
    1. \(f(x)=10+4x-x^2\), \(\quad [0,5]\)

      Absolute Maximum is \(14\)
      Absolute Minimum is \(5\)

      To see the full video page and find related videos, click the following link.
      MLC WIR 20B M151 week7 #1a


    2. \(f(x)=\left(x^2-4\right)^3\), \(\quad [-1,3]\)​

      Absolute Maximum is \(125\)
      Absolute Minimum is \(-64\) 

      To see the full video page and find related videos, click the following link.
      MLC WIR 20B M151 week7 #1b


    3. \(f(x)=2\cos x+\sin 2x\), \(\quad \left[0,\dfrac{\pi}{2}\right]\)​

      Absolute Maximum is \(\dfrac{3\sqrt{3}}{2}\)
      Absolute Minimum is \(0\)

      To see the full video page and find related videos, click the following link.
      MLC WIR 20B M151 week7 #1c