Linear Algebra Workshop
(1) Systems of Equations
(2) Matrices
(3) Vector spaces
(4) Linear Transformations
(5) Inner product spaces

Lecture 1

$$
\left.\begin{array}{l}
\mathbb{R}=\{\text { neal numbers }\} \\
\mathbb{C}=\{\text { complex numbers }\}
\end{array}\right\} \text { scalars } \text { (field) }
$$

Tuples of real numbers

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

"such that"
Set-builder
"Regard each $\left(x_{1}, \ldots, x_{n}\right)$ (n-tuple) as a vector"

Ex The coordinate vector of a point on the plane is an element of \mathbb{R}^{2}.

$\overrightarrow{O X}$: the vector represented by (a, b).

Def'n We cam define two operations on \mathbb{R}^{n} : is defined as

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right) \\
\propto\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \\
\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right) \\
\downarrow \\
\text { scalar multiplications } \quad \alpha \in \mathbb{R}
\end{gathered}
$$

$$
\text { Ex } \quad(1,2,3)+2(-1,2,1)=(1,2,3)+(-2,4,2)=(-1,6,5)
$$

geometric vector:
collection of all arrows parallel to a given $\overrightarrow{O X}$ with same direction and magnitude.

Linear equation

$$
x+y=1
$$

1 linear equation in 2 variables-
Good: Solve it!
Soln Set $y=s$, where s is any real number (parameter, IJ is free variable)

$$
x=1-5
$$

$(1-s, s)$ is a solution

$$
\begin{array}{ll}
\uparrow & \uparrow \\
x & y
\end{array}
$$

Solution Set $=\{$ all solutions $\}$

$$
S=\{(1-s, s) \mid s \in \mathbb{R}\} \subset \mathbb{R}^{2}
$$

$$
\begin{aligned}
(1-s, s) & =(1,0)+(-s, s) \\
& =\underbrace{(1,0)}_{\downarrow}+\underbrace{s(-1,1)}_{\text {moving inside }}
\end{aligned}
$$

move us from the solution 0 to the point set Clio) on the Solution set

Ex $\quad 2 x+y-4 z=2$
let

$$
z=s, \quad y=t \quad \text { (free) }
$$

$$
\begin{aligned}
& 2 x=2-y+4 z \\
& x=1-\frac{y}{2}+2 z=1-\frac{t}{2}+25
\end{aligned}
$$

$$
S=\left\{\left.\left(1-\frac{t}{2}+2 s, t, s\right) \right\rvert\, s, t \in \mathbb{R}\right\} \quad\left(<\mathbb{R}^{3}\right)
$$

\uparrow
Solution sat

$$
\begin{aligned}
\left(1-\frac{t}{2}+2 s, t, s\right) & =(1,0,0)+\left(-\frac{t}{2}, t, 0\right)+(2 s, 0, s) \\
& =(1,0,0)+t\left(-\frac{1}{2}, 1,0\right)+s(2,0,1)
\end{aligned}
$$

takes us to the
Parallel to the solution set
then
this vector moves along the solution set.

Two linear equations

$$
\left\{\begin{array}{l}
x+y=5 \\
x-y=1
\end{array}\right.
$$

Subtracting the first from the second equations (eliminates)

$$
\left\{\begin{array}{l}
x+y=5 \\
-2 y=-4 \quad \Rightarrow y=2
\end{array}\right.
$$

Substituting backward: $x+2=5 \Rightarrow x=3$
$S=\{(3,2)\}$ singleton: "with on element"

$$
\# \text { solutions }=1
$$

Ex $\left\{\begin{array}{ll}x+3 y=1 & \text { (1) } \\ 2 x+6 y=5 & \text { (2) }\end{array} \quad\right.$ multiply (1) by $-\underline{2}$ add to (1)

$$
\left\{\begin{array}{rl}
x+3 y & =1 \\
0 & =3
\end{array} \quad S=\phi\right.
$$ empty set

the system is inconsistent
parallel lines, no points in common
\# solutions $=0$

Ex $\left\{\begin{array}{l}x+2 y=3 \\ 4 x+8 y=12\end{array} \sim\left\{\begin{array}{l}x+2 y=3 \\ 0=0\end{array}\right.\right.$
\# Solutions = infinity.
\# Solutions: $0,1, \infty$

System of equations
m linear equations in n variables x_{1}, \ldots, x_{n}.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

$a_{i j}$: coefficients $\quad 1 \leq i \leq m, \quad 1 \leq j \leq n$
b_{i} : constant terms
Def ${ }_{n}^{\prime}$
A solution for a system as above is an

$$
n \text {-tuple }\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

that satisfies all equations of the system.

If there is at least one solution, we call the system consistent. Otherwise, inconsistent.

Two systems of equations are equivalent if if the gog have the same solution set.

$$
\begin{aligned}
& \text { (1) }\left\{\begin{array} { l }
{ x + y = 5 } \\
{ x - y = 1 }
\end{array} \text { is equivalent } \left\{\begin{array}{l}
x+y=5 \\
-2 y=-4
\end{array}\right.\right. \\
& S_{1}=\{(3,2)\}
\end{aligned}
$$

$$
\left\{\begin{array}{rc}
x+y=5 & \text { not equivalut to the } \\
0=0 & \text { above }
\end{array}\right.
$$

$$
S_{1} C_{\neq} S_{2}
$$

Elementary operations
(1) Suithking two equations
(2) multiplying an equation by a nonzero scalar.
(3) adding a scalar multiple of one equation to another.

Proposition Applying an elementary operation produces an equivalut system.

Definition A system is homogeneous if the

Constant terms are all $\stackrel{0}{=}$.

$$
\begin{aligned}
& \left\{\begin{array}{c}
x+y-z=0 \\
2 x-2 y+z=0
\end{array}\right. \\
& (0,0,0) \in S \neq \phi
\end{aligned}
$$

always consistent.

$$
b_{l}(\underbrace{0,0,-, 0)}_{n \text { times }} \in S
$$

equivalently s
A linear system is homogeneous if
\vec{O} is a solution

