Section 7.4 - Improper Integrals
Instructions
- This page includes exercises that you should attempt to solve yourself. You can check your answers and watch the videos explaining how to solve the exercises.
Concepts
- Using a limit to determine if improper integrals diverge or converge (and the value to which convergent integrals converge)
- Recognizing type 2 improper integrals and using limits to evaluate the integrals
- Using the Comparison Theorem to determine if an improper integral converges or diverges
Exercises
Directions: You should try to solve each problem first, and then click "Reveal Answer" to check your answer. You can click "Watch Video" if you need help with a problem.
1. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_2^{\infty} \frac{1}{\sqrt{x+7}}\,dx\)
The integral diverges to \(\infty.\)
2. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_1^{\infty} \frac{1}{5x-1}\,dx\)
The integral diverges to \(\infty.\)
3. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_1^{\infty} \frac{dx}{(4x+1)^2}\)
The integral converges to \(\displaystyle \frac{1}{20}.\)
4. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_{e^3}^{\infty} \frac{dx}{x \ln x}\)
The integral diverges to \(\infty.\)
5. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_{0}^{\infty} x^2e^{-x^3}\,dx\)
The integral converges to \(\displaystyle \frac{1}{3}.\)
6. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_{6}^{\infty} \frac{1}{x^2-7x+12}\,dx\)
The integral converges to \(-\displaystyle \ln \frac{2}{3}.\)
7. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_{-\infty}^{0} x e^{4x}\,dx\)
The integral converges to \(\displaystyle -\frac{1}{16}.\)
8. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle \int_{5}^{\infty} \frac{\ln x}{x^{10}}\,dx\)
The integral converges to \( \displaystyle \frac{\ln 5}{9(5^9)}.\)
9. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle{\int_9^{36} \displaystyle{{1}\over{\root 3 \of {x-9}}}\,dx}\)
The integral converges to \(\displaystyle \frac{27}{2.}\)
10. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle{\int_{0}^{5/4} \displaystyle{{1}\over{4x-5}}\,dx}\)
The integral diverges to \(-\infty .\)
11. Explain why the definite integral is improper. If the integral converges, evaluate the integral. If it diverges, explain why. \(\displaystyle{\int_{0}^9 \displaystyle{{1}\over{\sqrt[3]{x-1}}}\,dx}\)
The integral converges to \( \displaystyle \frac{9}{2}.\)
12. Use the Comparison Theorem to determine whether the improper integral converges or diverges. \(\displaystyle{\int_1^{\infty} \displaystyle{{x}\over{x^5+1}}\,dx}\)
13. Use the Comparison Theorem to determine whether the improper integral converges or diverges. \(\displaystyle{\int_2^{\infty} \displaystyle{{1}\over{x+e^{2x}}}\,dx}\)
14. Use the Comparison Theorem to determine whether the improper integral converges or diverges.\(\displaystyle{\int_1^{\infty} \displaystyle{{\sin^2 x}\over{x^4}}\,dx}\)