Scroll to Top

Virtual Math Learning Center

Virtual Math Learning Center Texas A&M University Virtual Math Learning Center

Practice Problems for Module 3


Exercises

Directions: You should try to solve each problem first, and then click "Reveal Answer" to check your answer. You can click "Watch Video" if you need help with a problem.

1. Evaluate the limit.

  1. \(\displaystyle \lim_{x\rightarrow -3}\frac{x^2-x-12}{x+3}\)
  2. \(\displaystyle \lim_{x\rightarrow 1}\frac{x^2-x-2}{x+1}\)
  3. \(\displaystyle \lim_{t\rightarrow 0}\frac{\sqrt{2-t}-\sqrt{2}}{t}\)
  4. \(\displaystyle \lim_{h\rightarrow 0}\frac{(3+h)^{-1}-3^{-1}}{h}\)
  5. \(\displaystyle \lim_{t\rightarrow 1}\left\langle 2t-3, \frac{t^2-t}{t-1}\right\rangle\)

  1. \(-7\)
  2. \(-1\)
  3. \(-\dfrac{1}{2\sqrt{2}}\)
  4. \(-\dfrac{1}{9}\)
  5. \(\langle -1,1\rangle\)

2. Find the limit.

  1. \(\displaystyle \lim_{x\rightarrow -4^-}\frac{|x+4|}{x+4}\)
  2. \(\displaystyle \lim_{x\rightarrow -4^+}\frac{|x+4|}{x+4}\)
  3. \(\displaystyle \lim_{x\rightarrow -4}\frac{|x+4|}{x+4}\)

  1. \(-1\)
  2. \(1\)
  3. DNE

If you would like to see more videos on this topic, click the following link and check the related videos.

3. For the function below, evaluate each of the following limits if it exists.
\[f(x)=\left\{
\begin{array}{ll}
x & \textrm{if } x<0\\
x^2 & \textrm{if } 0<x\leq 2\\
8-x & \textrm{if } x>2\\
\end{array}\right.
\]

  1. \(\displaystyle \lim_{x\rightarrow 0^+} f(x)\)
  2. \(\displaystyle \lim_{x\rightarrow 0^-} f(x)\)
  3. \(\displaystyle \lim_{x\rightarrow 0} f(x)\)
  4. \(\displaystyle \lim_{x\rightarrow 1} f(x)\)
  5. \(\displaystyle \lim_{x\rightarrow 2^-} f(x)\)
  6. \(\displaystyle \lim_{x\rightarrow 2^+} f(x)\)
  7. \(\displaystyle \lim_{x\rightarrow 2} f(x)\)

  1. \(0\)
  2. \(0\)
  3. \(0\)
  4. \(1\)
  5. \(4\)
  6. \(6\)
  7. DNE

If you would like to see more videos on this topic, click the following link and check the related videos.

4. Explain why the following function is discontinuous at \(x=0\).
\[f(x)=\left\{
\begin{array}{ll}
\cos x & \textrm{if } x<0\\
0 & \textrm{if } x=0\\
1-x^2 & \textrm{if } x>0\\
\end{array}\right.
\] ​

Since \(f(0)=0\) and \(\displaystyle \lim_{x\rightarrow 0} f(x)=1\), then \(f(x)\) is NOT continuous at \(x=0\) because \(f(0)\neq \displaystyle \lim_{x\rightarrow 0} f(x).\)

If you would like to see more videos on this topic, click the following link and check the related videos.

5. Find the values of \(a\) and \(b\) that make \(f\) continuous everywhere.
\[f(x)=\left\{
\begin{array}{ll}
\dfrac{x^2-4}{x-2} & \textrm{if } x<2\\
ax^2-bx+3 & \textrm{if } 2\leq x <3\\
2x-a+b & \textrm{if } x\geq 3\\
\end{array}\right.
\]

\(a=\dfrac{1}{2}, \qquad b=\dfrac{1}{2}\)

If you would like to see more videos on this topic, click the following link and check the related videos.

6. Find the limit.

  1. \(\displaystyle \lim_{x\rightarrow \infty} \dfrac{1-x^2}{x^3-x+1}\)
  2. \(\displaystyle \lim_{x\rightarrow \infty} \dfrac{4x^3+6x^2-2}{2x^3-4x+5}\)
  3. \(\displaystyle \lim_{x\rightarrow \infty} \left( \sqrt{9x^2+x}-3x\right)\)
  4. \(\displaystyle \lim_{x\rightarrow -\infty} \dfrac{1+x^6}{x^4+1}\)
  5. \(\displaystyle \lim_{x\rightarrow- \infty} \dfrac{\sqrt{1+4x^6}}{2-x^3}\)
  6. \(\displaystyle \lim_{x\rightarrow \infty} \dfrac{\sqrt{x+3x^2}}{4x-1}\)
  7. \(\displaystyle \lim_{x\rightarrow \infty} \dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}\)
  8. \(\displaystyle \lim_{x\rightarrow -\infty} \dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}\)

  1. 0
  2. 2
  3. \(\dfrac{1}{6}\)
  4. \(+\infty\)
  5. 2
  6. \(\dfrac{\sqrt{3}}{4}\)
  7. 1
  8. \(-1\)