Scroll to Top

Virtual Math Learning Center

Virtual Math Learning Center Texas A&M University Virtual Math Learning Center

Degree and Radian Angle Measure Exercise 2

Author: Hannah Solomon

The following problem is solved in this video. It is recommended that you try to solve the problem before watching the video. You can click "Reveal Answer" to see the answer to the problem.

Problem: Convert \(\dfrac{\pi}{3}\) and \(\dfrac{7\pi}{4}\) to degrees.

Answer: \(\dfrac{\pi}{3}\) radians is equivalent to \(60^\circ\)

\(\dfrac{7\pi}{4}\) radians is equivalent to \(315^\circ\)

Solution Method: To convert from radians to degrees we use the formula \begin{equation*}
        \text{radians } \times \frac{180}{\pi} = \text{ degrees}
    \end{equation*}This conversion factor comes from the fact that \begin{equation*}
        2\pi \text{ radians} = 360^\circ
    \end{equation*}Then we have\begin{align*}
        \pi \text{ radians} &= 180^\circ\\
        1 \text{ radian} &= \frac{180^\circ}{\pi}
    \end{align*}So we have \begin{align*}
        \frac{\pi}{3} \text{ radians} &= \frac{\pi}{3} \times \frac{180}{\pi} \text{ degrees}\\
        &= \frac{180}{3} \text{ degrees} \\
        &= 60 ^\circ
    \end{align*}And\begin{align*}
        \frac{7\pi}{4} \text{ radians} &= \frac{7\pi}{4} \times \frac{180}{\pi} \text{ degrees}\\
        &= \frac{7(180)}{4} \text{ degrees} \\
        &= 7(45)^\circ \\
        &= 315^\circ
    \end{align*}

See more videos from this section